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Abstract

Recent work has demonstrated the efficacy of using neural networks as estimators
within simulation-based inference (SBI) routines; broadly, their use has been shown
to improve the accuracy, sample efficiency and ability to scale to high-dimensional
data of the SBI routine itself. In parallel, in the Natural Language Processing
(NLP) community, significant progress has been made in using neural networks
to improve performance on canonical tasks—supervised classification, question
answering, machine translation, etc.—along similar lines. In this proposal, we
ask the following question: how can techniques from Neural NLP be applied to
Neural SBI? Specifically, we detail three ideas–inductive bias, data-augmentation
via back-translation, and transfer learning via pretrained language models–and
discuss their potential application.

1 Introduction

1.1 Neural SBI

Bayesian inference is the task of quantifying a posterior belief over parameters θ given observed data
x—where x was generated from a model p(x|θ)—via Bayes’ Theorem:

p(θ|x) = p(x|θ)p(θ)
p(x)

In numerous applications of scientific interest, e.g. cosmological, climatic or urban-mobility phenom-
ena, the likelihood of the data x under the data-generating function p(x|θ) is intractable to compute,
precluding classical inference approaches. Notwithstanding, simulating new data x from this function
is often possible, motivating the study of simulation-based Bayesian inference methods, termed SBI.

Recent work has explored the use of neural networks to perform key density estimation tasks, i.e.
subroutines, of the SBI routine itself. We refer to this work as Neural SBI. In neural likelihood
estimation (NLE) techniques [20, 15], a neural network qϕ(x|θ) is trained to estimate the (intractable)
true likelihood p(x|θ). Similarly, in neural posterior estimation (NPE) techniques [18, 14, 7], a
neural network qϕ(θ|x) is trained to directly estimate the target posterior density p(θ|x). Finally, in
neural ratio estimation (NRE) techniques [10], a neural network is trained to approximate likelihood
ratios which are later used as part of an MCMC subroutine to obtain posterior samples.

In each class of algorithm, and as compared to baseline approaches, neural networks have been
shown to improve key performance metrics of the SBI routine itself [16]: accuracy (of the inferred
target parameters), sample efficiency (of the often-costly simulator) and the ability to scale to high-
dimensional (observed and simulated) data. At the same time, we observe that while much focus
has been placed on how to use neural networks in SBI, comparatively little attention is paid to the
neural network itself. In this vein, an obvious question becomes: in pursuing the latter, what further
performance improvements lie in wait?



1.2 Neural NLP

In recent years, the NLP community (among others) has successfully used neural networks to
similarly improve performance in canonical learning routines. Often, these gains result directly from
its sustained focus on the workings of the neural network itself. On this note, we detail three (of
many) key ideas from Neural NLP, and discuss their potential application to Neural SBI.

2 Proposal

2.1 Inductive Bias

2.1.1 Modeling Natural Language

"Inductive bias" refers to knowledge possessed by a machine learning model that does not come from
data [1]. For example, this bias may derive from the model’s architecture, optimization routine or
optimization target. Namely, it is this bias that "informs" the model’s behavior when predicting on
novel data.

Nature language is sequential in nature. (Typically, natural language is encoded as a sequence
of "one-hot" basis vectors in a high-dimensional space.) As such, an ideal statistical learner of
natural language would consider important properties of sequential data, e.g. positional information,
long-range dependencies, and repeating patterns of elements in input and output sequences. On this
note, in recent years, the NLP community has effectively converged on a small set of neural network
architectures which capture these inductive biases to varying degrees—Recurrent Neural Networks
(RNNs) [6], Long Short-Term Memory Networks (LSTMs) [11], Convolutional Neural Networks
(CNNs) [12] and most recently Transformers [26]—all of which continue to demonstrate impressive
performance on difficult NLP tasks.

2.1.2 Modeling Complex Scientific Phenomena

Recent NLE, NPE and NRE techniques all employ neural network models as density estimation
subroutines to great effect. In NLE and NPE, the neural network is often chosen to be a normalizing
flow or Mixture Density Network, as they are flexible enough to model complex densities, offer exact
density computation and are fast to train and evaluate on GPUs [20, 15, 18, 14, 7, 19]. In NRE, [9]
employ a variety of multilayer perceptron and ResNet architectures.

In the sum of these works, experiments are performed on tasks as diverse as: the M/G/1 queue model
(a stochastic arrival process), the Lotka-Volterra population model (evolution of two adversarial
populations), the Hodgkin-Huxley cortical pyramidal neuron model (a model of spiking neurons),
and more. In the SBI community at large, practitioners model more diverse phenomena still, often
using data with rich structure (e.g. graphs, spatio-temporal rollouts, etc.) and high-dimensionality.

Motivated by (i) the apparent lack of existing work exploring inductive bias for Neural SBI compo-
nents and (ii) the resounding success of such efforts in Neural NLP, we ask: do the neural networks
typically used in Neural SBI sufficiently encode an inductive bias consistent with the complex
structure of the data they seek to model? If not, what performance gains do we currently miss?

2.2 Data-augmentation via Back-translation

2.2.1 Back-translation in Sequence Modeling

Back-translation is a data-augmentation strategy that has been shown to improve sample efficiency in
supervised NLP tasks [24, 27]. Given a dataset mapping sentences xA in language A to sentences
xB in language B, we can first train translation models pA→B(xB |xA) and pB→A(xA|xB); then,
for each training pair (x, y) in our target dataset, we can create (additional) synthetic examples
(x̃ ∼ pB→A(xB ∼ pA→B(x)), y) on which to train. Back-translation techniques have been used
to create synthetic data from both labeled and unlabeled datasets, and have enabled state-of-the-art
results on numerous supervised benchmarks with orders-of-magnitude less labeled data [27].
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2.2.2 Improving Sample Efficiency via Back-translation

In SBI, the simulator p(x|θ) is typically expensive to run. As such, numerous works have explored
training neural conditional density estimators qϕ in a sequential manner, where in each training round,
they aim to train qϕ on the specific simulated training data tuples {θn,xn}1:N that most efficiently
facilitate (i.e. imply the lowest number of required simulations overall) the downstream inference
task [18, 20, 14, 7, 9]. This approach is an instance of active learning [8].

For example, in [18], the authors train an estimator qϕ(θ|x) of the target posterior density. They then
use this estimator to compute qϕ(θ|x = xo), where xo is the original, observed data. Intuitively,
they note that the sample efficiency of this estimate is directly related to the number of diverse
data {θn,xn}1:N—where xn is close to xo—on which qϕ is trained. In this vein, in each round
of estimation, they simulate data xn ∼ p(x|θn) using θn of high (approximate) posterior density
p̂(θ|x = xo); in this way, they augment their training set for qϕ with a diverse set of synthetic inputs
xn near the target input xo—improving the sample efficiency of qϕ itself, and the SBI routine at large.
Similarly, in [20], the authors augment the training set of a neural estimator of the data likelihood in
related fashion.

In fact, we can reinterpret these active learning approaches as back-translation: p̂(θ|x = xo)
gives pA→B(xB |xA)—mapping "labeled" inputs xo to samples θn in a complementary space
Θ—which are then "translated back" through some stochastic input generator xn ∼ p(x|θn) =
pB→A(xA|xB)—mapping θn ∈ Θ to synthetic tuples {θn,xn}1:N used to further train qϕ in the
input region (xo) of interest.

In sum, we propose reconsidering the back-translation literature as a set of potential techniques for
active learning in Neural SBI—where the high marginal cost of annotating NLP training data is
analogous to that of simulating data on which an estimator qϕ is trained. In this vein, we aim to
leverage its many insights regarding auxiliary datasets (both supervised and unsupervised), models,
training strategies and more to further improve the sample efficiency of Neural SBI routines.

2.3 Transfer Learning via Pretrained Language Models

2.3.1 Pretrain, Fine-tune

Language modeling refers to a statistical model of language defined as:

p(x) = p(x0, ..., xN ) =

N∏
i

p(xi|x<i)

which computes the probability density at a given text sequence (e.g. sentence) x. As p(x) factor-
izes into factors p(xi|x<i), we can construct a language model by simply training a "next-token-
prediction" classifier. Finally, as unlabeled text data (e.g. all text on the Internet) implicitly forms a
gargantuan, labeled training set for this task, we can train powerful language models without any
(expensive) human annotation at all.

Transfer learning, on the other hand, refers to the process of injecting knowledge from one task
and/or dataset into another [17, 25, 4]. On this note, in recent years, it has become standard in NLP
to (i) "pretrain" a language model (e.g. BERT, RoBERTa, GPT-3) on a large corpus of text, then
(ii) "fine-tune" this model given a labeled dataset for the target task (e.g. question answering). In
general, this "pipeline" has led to significant improvements in the sample efficiency and accuracy of
downstream NLP models [13, 5, 23, 2].

2.3.2 Improving Sample Efficiency and Accuracy via Transfer Learning

NLE, NPE and NRE techniques (implicitly) train neural networks from scratch on (costly) simulated
data. Instead, how might transfer learning improve the sample efficiency and accuracy of these
models? On what upstream tasks might we "pretrain" neural estimators qϕ so as to reduce—ideally,
significantly—the number of simulations required for downstream inference?
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3 Initial Research Direction

To begin, I would target Improving Sample Efficiency and Accuracy via Transfer Learning as it
offers:

1. A wide variety of "free" baseline approaches—initializing a neural estimator qϕ as any num-
ber of pretrained models (whose API fits the estimation task in question) from pytorch.org/video,
pytorch.org/audio, huggingface.co/models, and other such repositories.

2. A clear evaluation metric—the number of simulations s required to achieve a fixed Classifier
2-Sample Test (C2ST; a classifier to discriminate samples as having been drawn from the true or
inferred posterior) performance p [16].

3.1 Proposed Research Plan

Week 1-3 Reproduce benchmarking results from [16], isolating their comparison of s and p for the
models and tasks they study.

Week 3-6 Select a single task, e.g. the Lotka-Volterra population model, and a single SBI routine, e.g.
NLE [20]. In this domain, qϕ(x|θ) is trained to estimate the true likelihood p(x|θ) of a sequence of
20 summary statistics x given parameters θ, where x ∈ R20 and θ ∈ R4. As such, in this step, we
initialize qϕ with a variety of pretrained sequence models of language, vision and audio, then fine-tune
as per the prescribed NLE routine. For each model, we note how its basic characteristics—number of
parameters, amount of training data, training task, general architecture—impact p. From this study,
we select a single pretraining training task and architecture, denoting this set of candidate models as
C.

Week 6-10 Obtain a dataset of historical Lotka-Volterra simulations, e.g. [22]. For each task and
architecture in C, pretrain qϕ (from scratch) on this data. Then, fine-tune on the downstream task and
measure p. Additionally, vary the amount of pretraining data and repeat this step.

Week 10-14 Should more data help, train a Neural ODE model [3] to learn the dynamical system
itself given the datasets above. Then, simulate pseudo-observations, append to our pretraining dataset,
and repeat Week 6-10.

Week 14-20 For each architecture in C, craft and test novel pretraining tasks specific to the Lotka-
Volterra problem domain. For example, given a random subset of the values in x, predict the timestep
t of each? Or, given a random pair of values from x, predict their temporal order?

Week 20-24 Experiment with novel tasks and architectures outright. For example, given a randomly
shuffled x, predict its sorting permutation via an architecture like SoftSort [21]?

4 Conclusion

Neural SBI routines have demonstrated substantial promise in performing statistical inference in
meaningful problems of scientific interest. In this proposal, we’ve presented three directions of
research—inspired by developments in Neural NLP—for improving these algorithms further.
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